How to sort a dataFrame in python pandas by two or more columns?

ghz 1years ago ⋅ 2366 views

Question

Suppose I have a dataframe with columns a, b and c, I want to sort the dataframe by column b in ascending order, and by column c in descending order, how do I do this?


Answer

As of the 0.17.0 release, the [sort](http://pandas.pydata.org/pandas- docs/version/0.17.0/generated/pandas.DataFrame.sort.html) method was deprecated in favor of [sort_values](http://pandas.pydata.org/pandas- docs/stable/generated/pandas.DataFrame.sort_values.html). sort was completely removed in the 0.20.0 release. The arguments (and results) remain the same:

df.sort_values(['a', 'b'], ascending=[True, False])

You can use the ascending argument of [sort](http://pandas.pydata.org/pandas- docs/stable/generated/pandas.DataFrame.sort.html):

df.sort(['a', 'b'], ascending=[True, False])

For example:

In [11]: df1 = pd.DataFrame(np.random.randint(1, 5, (10,2)), columns=['a','b'])

In [12]: df1.sort(['a', 'b'], ascending=[True, False])
Out[12]:
   a  b
2  1  4
7  1  3
1  1  2
3  1  2
4  3  2
6  4  4
0  4  3
9  4  3
5  4  1
8  4  1

As commented by @renadeen

Sort isn't in place by default! So you should assign result of the sort method to a variable or add inplace=True to method call.

that is, if you want to reuse df1 as a sorted DataFrame:

df1 = df1.sort(['a', 'b'], ascending=[True, False])

or

df1.sort(['a', 'b'], ascending=[True, False], inplace=True)