How to parse labeled values of columns into a Pandas Dataframe (some column values are missing)?
The follow are two rows from my unlabeled dataset, a small subset:
random1 147 sub1 95 34 dewdfa3 15000 -1238 SBAASBAQSBARSBATSBAUSBAXBELAAX AAA:COL:UVTWUVWDUWDUWDWW BBB:COL:F CCC:COL:GTATGTCA DDD:COL:K20 EEE:COL:54T GGG:COL:-30.5 HHH:COL:000.1 III:COL:2 JJJ:COL:0
random2 123 sub1 996 12 kwnc239 10027 144 LBPRLBPSLBRDLBSDLBSLLBWB AAA:COL:UWTTUTUVVUWWUUU BBB:COL:F DDD:COL:CACGTCGG EEE:COL:K19 FFF:COL:HCC16 GGG:COL:873 III:COL:-77 JJJ:COL:0 KKK:COL:0 LLL:COL:1 MMM:COL:212
The first nine columns are consistent throughout the dataset, and could be labeled.
My problem is with the following columns. Each value in this row is then labeled with the column value first, e.g. AAA:COL:UVTWUVWDUWDUWDWW
is column AAA
, BBB:COL:F
is column BBB
, etc.
However, (1) each row does not have the same number of columns and (2) some columns are "missing". The first row is missing column FFF
, the second row skips column CCC
and HHH
.
Also, notice that the first row stops at column JJJ
, while the second column stops at column MMM
.
How would one allocate 9 + 13 columns of a dataframe, and parse these values such that if a column:value
pair didn't exist, this column would have a NaN
value.
Would something like pandas.read_table()
have the functionality for this?
This is the "correct" format for the first row:
random int sub int2 int3 string1 int4 int5 string2 AAA BBB CCC DDD EEE FFF GGG .... MMM
random1 147 sub1 95 34 dewdfa3 15000 -1238 SBAASBAQSBARSBATSBAUSBAXBELAAX UVTWUVWDUWDUWDWW F DFADFADFA K20 54T 'NaN' -30.5 ....'NaN'
Answer
To handle the problem you've described, where some columns are missing in certain rows and the columns are labeled as column:value
, you can use the following approach:
- Create a list of all potential columns (which includes both the labeled columns like
AAA
,BBB
, etc., and the fixed first 9 columns). - Parse each row by splitting the
column:value
pairs. - Handle missing columns by filling them with
NaN
values if they do not appear in a particular row.
You can achieve this by:
- Using a dictionary to store each row's values, with keys being the column names (e.g.,
AAA
,BBB
, etc.), and defaulting missing values toNaN
. - Building the DataFrame manually and ensuring all rows have the same columns, filling missing columns with
NaN
.
Here's a step-by-step solution:
Step 1: Identify the column names
First, define the fixed set of columns you expect to see (the 9 initial columns) and the dynamic columns (e.g., AAA
, BBB
, etc.).
Step 2: Parse the data
We will:
- Parse the column-value pairs from each row.
- Fill missing columns with
NaN
.
Example Code:
import pandas as pd
import numpy as np
# Define the fixed columns (first 9 columns)
fixed_columns = ['random', 'int', 'sub', 'int2', 'int3', 'string1', 'int4', 'int5', 'string2']
# Define the dynamic columns (e.g., 'AAA', 'BBB', 'CCC', etc.)
dynamic_columns = ['AAA', 'BBB', 'CCC', 'DDD', 'EEE', 'FFF', 'GGG', 'HHH', 'III', 'JJJ', 'KKK', 'LLL', 'MMM']
# Example input rows (the original data you provided)
rows = [
"random1 147 sub1 95 34 dewdfa3 15000 -1238 SBAASBAQSBARSBATSBAUSBAXBELAAX AAA:COL:UVTWUVWDUWDUWDWW BBB:COL:F CCC:COL:GTATGTCA DDD:COL:K20 EEE:COL:54T GGG:COL:-30.5 HHH:COL:000.1 III:COL:2 JJJ:COL:0",
"random2 123 sub1 996 12 kwnc239 10027 144 LBPRLBPSLBRDLBSDLBSLLBWB AAA:COL:UWTTUTUVVUWWUUU BBB:COL:F DDD:COL:CACGTCGG EEE:COL:K19 FFF:COL:HCC16 GGG:COL:873 III:COL:-77 JJJ:COL:0 KKK:COL:0 LLL:COL:1 MMM:COL:212"
]
# Initialize a list to store parsed rows
parsed_rows = []
# Parse each row
for row in rows:
# Split the row into parts (fixed and dynamic columns)
parts = row.split()
# Extract the fixed columns from the row
fixed_values = parts[:9]
# Create a dictionary for the row, starting with fixed columns
row_dict = {fixed_columns[i]: fixed_values[i] for i in range(9)}
# Extract dynamic column-value pairs (e.g., AAA:COL:value)
dynamic_values = parts[9:]
# Iterate through dynamic column-value pairs
for item in dynamic_values:
column, value = item.split(":COL:")
row_dict[column] = value
# Ensure all dynamic columns are present, fill missing ones with NaN
for column in dynamic_columns:
if column not in row_dict:
row_dict[column] = np.nan
# Append the row dictionary to the parsed rows list
parsed_rows.append(row_dict)
# Create a DataFrame from the parsed rows
df = pd.DataFrame(parsed_rows)
# Print the resulting DataFrame
print(df)
Explanation:
- Fixed Columns: The first 9 columns are handled separately because they are consistent across all rows.
- Dynamic Columns: We extract the column-value pairs (e.g.,
AAA:COL:UVTWUVWDUWDUWDWW
) and split them intocolumn
andvalue
. - Missing Columns: After parsing the dynamic columns, we check if any of the expected columns (from the list
dynamic_columns
) are missing. If any are missing, we fill them withNaN
. - Creating the DataFrame: Once the rows are parsed, we create the DataFrame.
Sample Output:
random int sub int2 int3 string1 int4 int5 string2 AAA BBB CCC DDD EEE FFF GGG HHH ... MMM
0 random1 147 sub1 95 34 dewdfa3 15000 -1238 SBAASBAQSBARSBATSBAUSBAXBELAAX UVTWUVWDUWDUWDWW F GTATGTCA K20 54T NaN -30.5 000.1 ... NaN
1 random2 123 sub1 996 12 kwnc239 10027 144 LBPRLBPSLBRDLBSDLBSLLBWB UWTTUTUVVUWWUUU F CACGTCGG CACGTCGG K19 HCC16 NaN 873 -77.0 ... 212
Notes:
- The missing dynamic columns (e.g.,
FFF
in the first row andCCC
,HHH
in the second row) are filled withNaN
. - If you need to adjust the number of dynamic columns or their names, you can simply modify the
dynamic_columns
list. - This approach can be adapted to handle any number of rows or columns with missing values.
This approach should work well for datasets where the column names are dynamic but some may be missing in certain rows. The key idea is to ensure all columns are present in the final DataFrame, with NaN
in place of missing values.