Replacing the Weight-of-Evidence (WoE) with its corresponding value
I have variable called x
whose minimum value is zero and maximum is 2 million. So I cut the value into bins like this code:
bins = [0,1,10000,20000,50000,60000,70000,100000,2000000]
df_input['X_bins'] = pd.cut(df_input['X'], bins,right=False)
Currently I am using for-loop to replace each bin with their Weight-of-Evidence value:
def flag_dfstd(df_input):
if (df_input['X'] >=0) & (df_input['X'] <100) :
return '-0.157688'
elif (df_input['X'] >=100) & (df_input['X'] < 10000) :
return '-0.083307'
elif (df_input['X'] >=10000) & (df_input['X'] < 20000) :
return '0.381819'
elif (df_input['X'] >=20000) & (df_input['X'] < 50000):
return '0.364365'
else:
return '0'
df_input['X_WOE'] = df_input.apply(flag_dfstd, axis = 1).astype(str)
Is there way that I can replace the Weight of Evidence without using for loop?
Answer
Yes, you can replace the Weight of Evidence (WOE) values without using a for loop by utilizing pandas
' pd.cut()
to create the bins and pd.Series.replace()
or map()
to assign the corresponding WOE values.
Here’s how you can do it:
- Use
pd.cut()
to create the bins. - Create a mapping of the bin ranges to their WOE values.
- Use
map()
to replace the bin labels with the corresponding WOE values.
Here’s an optimized version of your code:
import pandas as pd
# Define the bins and the corresponding WOE values
bins = [0, 1, 10000, 20000, 50000, 60000, 70000, 100000, 2000000]
woe_values = {
pd.Interval(0, 1, closed='left'): '-0.157688',
pd.Interval(1, 10000, closed='left'): '-0.083307',
pd.Interval(10000, 20000, closed='left'): '0.381819',
pd.Interval(20000, 50000, closed='left'): '0.364365',
pd.Interval(50000, 60000, closed='left'): '0',
pd.Interval(60000, 70000, closed='left'): '0',
pd.Interval(70000, 100000, closed='left'): '0',
pd.Interval(100000, 2000000, closed='left'): '0'
}
# Use pd.cut to assign bins
df_input['X_bins'] = pd.cut(df_input['X'], bins, right=False)
# Map WOE values based on the bin labels
df_input['X_WOE'] = df_input['X_bins'].map(woe_values)
# Display the result
print(df_input[['X', 'X_bins', 'X_WOE']])
This eliminates the need for a for
loop and should be more efficient when working with large datasets.