Question
I am trying an Op that is not behaving as expected.
graph = tf.Graph()
with graph.as_default():
train_dataset = tf.placeholder(tf.int32, shape=[128, 2])
embeddings = tf.Variable(
tf.random_uniform([50000, 64], -1.0, 1.0))
embed = tf.nn.embedding_lookup(embeddings, train_dataset)
embed = tf.reduce_sum(embed, reduction_indices=0)
So I need to know the dimensions of the Tensor embed
. I know that it can be
done at the run time but it's too much work for such a simple operation.
What's the easier way to do it?
Answer
Tensor.get_shape()
from [this
post](https://stackoverflow.com/questions/34079787/tensor-with-unspecified-
dimension-in-tensorflow).
c = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
print(c.get_shape())
==> TensorShape([Dimension(2), Dimension(3)])